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Abstract

This paper examines Ways in which the addition of data modeling features
can enhance the capabilities of mathematical modeling languages, and
demonstrates how such integration might be achieved as an application
of the embedded languages technique proposed by Bhargava and Kim-
br-ougM- Decision'making, and decision support systems, require the
representation and manipulation of both data and mathematical models.
Several data modeling languages as well as several mathematical mod-
eling languages exist, but they have differences sets of capabilities. We
motivate with a detailed example the need for the integration of these
languages. We describe the benefits that might result, and claim that
this could lead to a significant improvement in the functionality of model
management systems. Then we present our approach for the integration
of these languages, and specify how the claimed benefits are realized.

*Tifs author's work on this paper was performed in conjunction with research funded by
the Naval Postgraduate School.



1 Introduction

This paper examines ways in which the addition of data modeling features

can enhance the capabilities of mathematical modeling systems, and presents a

methodology for integrating data and mathematical modeling languages. Our

research is based on the recognition that decision-making, and decision support

systems, require the representation and manipulation of both data and math-

ematical models (see e.g., [42]). Research in database systems has led to the

development of several data modeling languages (e.g., languages based on the

semantic data model [29]). Similarly, several languages have been proposed for

mathematical modeling as well (e.g., algebraic modeling languages [21]). How-

ever, these two sets of languages have usually been developed independently of

each other, and have various differences in their capabilities. Data modeling lan-

guages have few features for representing mathematical relationships between

elements of the domain, while mathematical modeling languages lack many of

the facilities, found in data modeling languages, for representing qualitative

relationships between these elements.

There is a consensus among researchers (e.g., [6, 4, 27, 16]) that decision

support and modeling systems should support the entire modeling life-cycle. In

recent years there has been much research on the model management component

of a decision support system, aimed at model representation and manipulation.

This work has been based on several different approaches such as structured

modeling [27, 26], graph-based modeling [31], embedded languages [6, 4], and

executable modeling languages [21, 20, 9, 4, 24]. These approaches have led to

the development of several model representation languages, such as SML [24]

and LSM [12] (for structured modeling), LT and L, [6, 4] (in the embedded

languages approach), and AMPL [201 (an executable modeling language). It

has resulted in several general modeling systems, including FW/SM [23] for

structured modeling, TEFA [6]-based on embedded languages, NETWORKS

[31]-a graph-based modeling system, and GAMS [9-based on an algebraic

executable modeling language, as well as special-purpose systems to support

specific modeling activities. For example, ANALYZE [28] supports understand-

ing and analysis of linear programming models and solutions, and LPFORM



[35] supports the formulation of linear programs.

These approaches have emphasized the development of mathematical mod-

eling capabilities, but have largely ignored data modeling features, e.g., the

representation of set-theoretic structural, qualitative relationships2 that exist

among the elements being modeled. Such relationships influence the modeling

process, and the mathematical models these systems represent, in several ways.

One, many potential users of mathematical modeling techniques find it easier

to conceptualize a problem in terms of the data modeling relationships rather

than the mathematical relationships ([321. Two, problem-specific data is re-

quired for the solution of these models-it is desirable to access this data from

an existing database rather than to create, and maintain, a copy of the data

for the solver being used. Three, the structural and qualitative relationships

are often the foundations of, and the assumptions underlying, the mathematical

relationships that approximate the real problem. The ability to represent and

reason with the justifications for the mathematical formulation is particularly

useful in model formulation, in model communication, in understanding model

solutions, and in model maintenance (40).

While several languages (e.g. semantic data modeling languages) do exist for

the representation of such semantic relationships, these have few mathematical

modeling capabilities. There is, therefore, a need to integrate these two sets of

capabilities within a single framework. One way to achieve such integretion is

to create a new unifying conceptual framework and modeling langi age, as has

been done in the case of structured modeling. Another is to pro' .,Ie systematic

means for integrating existing languages, thus allowing their users to continue

using those languages. Our research adopts the latter alternative. 3

'Structured modeling is an exception to this statement, but, as we argue in the sequel, our
approach is fundamentally different from that taken in struct,ed modeling.

2 These include what are often termed abstraction relat r,ships (aggregation, generaliza-
tion, grouping, specialization) as well as other qualitat;" e relationships (e.g., a supply rela-
tionship between a set of plants and a set of customeri,) between model elements, which are
reducible to set-theoretic operations.

'There is another fundamental distinction bet,..een our approach for such integration and
that of structured modeling. In structured rwoeling, the design of the relational scheme
(elemental tables) is customized to meet the input and output requirements of a particular
structured model. (In fact, the normalized tables can be generated automatically from model
schema&s.) This relational scheme could either define tables that actually store the elemental
data, or could define a view of other existing tables. In our approach, the data modeling can
be entirely independent of the dat i requirements of individual mathematical models. The

2



The rest of this paper is organized as follows. In §2 we discuss the principal

benefits (from the perspective of mathematical modeling systems) that should

accrue from the integration of mathematical and data modeling features, and

illustrate these benefits with an example. In §3, we explain how such integration

can be achieved in a systematic and generalizable manner. We propose that

the embedded languages technique, proposed by Bhargava and Kimbrough [4],

is a useful technique for achieving our objectives. We use this technique to

integrate a) a generic executable mathematical modeling language L,, and

b) an executable data modeling language Ld, within a common language. In

§4 we illustrate, using our earlier example, how the potential benefits discussed

it, §'-' are realized, and how the functionality of mathematical modeling systems

can Le improved as a result. The final section (§5) discusses the contribution of

our work and suggests directions for further research.

2 Motivation

In this section we present our motivation for developing a language that inte-

grates data and mathematical modeling features. We do so by arguing that cer-

tain desirable features can be implemented in modeling languages and systems

only if the modeling language is able to represent both data and mathemati-

cal relationships. We begin by considering a problem faced by designers of a

telecommunication network for a hypothetical firm.

Example 1 Communications Network Design

Host computers and terminal controllers are to be connected to con-

centrators. The terminals are partitioned into various clusters, with

each cluster being controlled by a terminal controller. A host com-

puter may also serve as a terminal controller. For most design pur-

poses, host computers and terminal controllers are equivalent, and

are considered customer sites. The telecommunications network con-

sists of connections between these customer sites and concentrators.

The concentrators and customer sites are called network elements

relationships between the data stored in the database and the inputs or outputs of the models
are captured by explicitly declared mappings.
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Each site must be served by exactly one concentrator, though the

same concentrator may serve various sites. The average load (the

data traffic to and from the host) offered by each host computer and

each terminal is known, and is measured in bits per second. For

a terminal cluster, the sum of the loads at all the terminals in the

cluster is regarded as the load for that cluster. There is an upper

limit, called the maximum bandwidth, to the data flow that can be

handled by each concentrator.

The existing links between customer sites and concentators are

of two types: leased links, and owned links. An existing link is
.valid" if and only if the customer site and concentrator it connects

are compatible, i.e., they support the same protocol. In general, the

cost of using an owned link is proportional to the speed of the link.

The cost of using a leased link is a non-linear function of the traffic

on the link. However, we consider a simplified scenario in which all

link usage costs are constant, irrespective of the type of link. There

are also fixed st-t-up costs associated with locating and operating

concentrators.

The objective is to develop a linkage and location plan that sat-

isfies the load requirements of customer sites at a minimum cost.

The problem of developing the linkage and location plan can be formulated

as a mathematical programming model, as represe, d below (the cost of using

"invalid" links is set to infinity).

Minimize E ZZ Ci. X, + Z_ Fi Zi (1)
EEC J ES IEC

s.t_ X, =1 Vj E S (2)
EEC

L:,\ < _ K, Vi E C (3)

jES

x,2 Z, E {o, 1) (4)

where
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S is the set of customer sites (hosts and terminal controllers)

C is the set of concentrators{ I if concentrator i serves site j
0 otherwise

{ 1 if concentrator i is operated
0 otherwise

C,: Cost of using link (i,j)

F,: Set-up cost of locating and operating concentrator i

Lj: Load of customer site j

K,: Bandwidth of concentrator i

2.1 Problem Conceptualization

Consider a fragment of the data model for example 1 shown in Figure 1. The

information about the problem contained in this model can be explained infor-

mally as follows (formal definitions of the italicised terms are given in §3). The

nodes "Concentrators," "Sites," and "Terminals" represent the set of con-

centrators, customer sites, and individual terminals, respectively. The nodes

"Owned-links" and "Leased-links" represent the set of owned and leased links

that exist between the concentrators and sites. Each of these link nodes is an

aggregation (a Cartesian product) of concentrators and customer sites. The

node "Links," which represents all the available links between concentrators

and sites, is a generahzation of these two link nodes. The node "Serves" is a

speczahzation of links, and represents those links that are operated to serve sites

from concentrators. A "Network-element" is a generalization of concentrators

and sites. "Host-computers" and "Controllers" are specializations of sites.

The node "Clusters" is a grouping-of terminals, and each cluster controls a

terminal controller.

This fragment of the data model is useful in conceptualizing the original

problem since it captures, explicitly and directly, essential information about the

problem. Of course, we must note that certain of tl nformation captured in the

data model could also be represented in mathematical modeling languages. For

example, the existence of network elements, customer sites and concentrators,

and of the linkage between them, is represented in AMPL as:

. set V; set of network elements.
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" set C; set of concentrators.

" set S; set of customer sites.

" set T; set of terminal controllers.

" set 7-; set of host computers.

" set 0; set of available owned links between concentrators and customer

sites.

* set ,M: set of available leased links between concentrators and customer

sites.

However, since the mathematical formulation deals with only customer sites

and concentrators, it is unlikely that A', T, 7, 0, and A. would be mentioned

at all in the representation. While EMLs provide an excellent representation

of the information necessary for solving a given mathematical formulation for a

problem, they fall short in capturing other information relevant to the original

problem. We illustrate this by considering a few other aspects of the problem.

1. Both concentrators and customer sites are network elements. (A network

element is a generalization of concentrators and customer sites.)

2. There are two kinds of customer sites, hosts and terminal controllers.

These two kinds are not mutually exclusive, since a host computer can

also be a terminal controller. (Host computers and terminal controllers

are both a specialization of customer sites.)

3. There is a link-cost associated with both owned links and leased links

between concentrators and customer sites. There is also a link-speed as-

sociated with each owned link between concentrators and sites.

4. A cluster is a group of terminals.

These specific items of information about the problem are captured ade-

quately using constructs of a data modeling language (see Figure 1), but can



not be represented adequately in existing mathematical modeling languages, as

discussed below. 4

First, note that both the generalization and specialization relationships (items I

and 2 above) are represented in EMLs, such as AMPL or GAMS, using the same

set-theoretic operator:

* ,=CUS, and

'H CS, T C S, S = U T.

Due to this semantic overloading of the set union operator, the qualitative dis-

tinction between these two kinds of relationships is lost. Second, the attributes

of the relationships between objects (e.g., link-speed, link-cost--item 3 above)

can be represented in EMLs only by using indexed variables (where the index

sets represent the objects), whereas data modeling languages directly represent

these as attributes of the relationships. In the data model, link-speed is rep-

resented as an attribute of the relationship owned-links between concentrators

and sites, and link-cost is an attribute of links (see Figure 1). In the EML rep-

resentation, however, the indexed variables Cij do not convey information as

to which relationship-owned-link or leased-link-they are attributes of. Third,

the grouping relationship (item 4) has no adequate counterpart in mathematical

modeling languages [251.
In general, the evolution of semantic data modeling languages has been

guided by the need to provide constructs for the direct and explicit represen-

tation of structural relationships between objects. Thus, the inclusion of data

modeling constructs in languages for mathematical modeling should facilitate

problem conceptualization. For example, in a successful application of manage-

ment science techniques to the scheduling of the 1992 Olympic games, Andreu

and Corominas begin by developing an entity-relationship data model of the

problem [3]. Fourer argued that an algebraic representation of the mathematical

formulation reduces problems of verification, modification, and documentation,

is more readable and understandable, makes use of powerful abstractions com-

monly used by modelers, and is independent of particular algorithms [21]. In
4 It is not surprising that this is the case, since such information is not required to solve

the model, and since EMLs primarily aim to provide an alternative (to matrix generators)
representation that can be transformed to that required by a solver.



a similar way, a representation of the structural and qualitative relationships,

using data modeling constructs, facilitates verification, modification, and doc-

umentation of the problem, and is independent of a particular mathematical

formulation of it. This, we shall see, is a significant consideration .,I model

revision and version managei.ient.

2.2 Ensuring Integrity of Data

Consider, in example 1, the statement An existing link is "valid'" if and only if

the customer site and concentrator it connects are compatible, i.e., they support

the same protocol. It essentially states that the proble:.i data on available links

should include no pair (i.j) such that customer site i and concentrator j are not

compatible. In other words, the sets of owned links and leased links should both

be subsets of the set of elements (ij) where i and j have the same protocol. For

any invalid (i, j) pair, the cost of using that link is assumed to be infinite. This

information is represented in a data modeling language as integrity constraints,

and is enforced via statements equivalent to the expressions below.

O U ." C {(i,j) : i E C,j S, protocol(i) = protocol(j)} (5)

((i.j) 0 U M) - (link-cost((ij)) = x) (6)

Note that, viewed by the user of an EML, this is a constraint on the "input"

data for the model, and is thus a pre-processing problem (unlike the constraint

Each site must be served by exactly one concentrator which is a constraint on the

solution). From a data modeling viewpoint, however, this is simply an integrity

constraint on the data-it might constrain the inputs for one model, and the

solution of another. In general, data moceling languages and database systems

emphasize features for ensuring integrity of data. This (i.e., for input data) is

typically not considered a function of a mathematical modeling language-it is

assumed that the integrity of problem-specific data has been ensured externally-5

'Recent extensions to AMPL do allow modelers to declare a "check" statement to ensure
integrity.
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2.3 Model Formulation

Consider the modeling variables in the network design problem of example 1.

Each variable used in the mathematical programming formulation represents a

problem-specific concept. For instance, the variable X,, denotes the existence

(or lack of it) of a link between concentrator i and customer site j. In the

data model for this problem, the aggregation node links represents the concept

of concentrator-site linkage, which concept causes the inclusion of the variable

Xi, in the mathematical formulation. Similarly, consider the constraint E, X,,

< 1. This constraint is derived from the statement Each site must be serred by

exactly one concentrator, though the same concentrator may ser-ie various sites

in the problem description. In the data model, this statement is represented in

the functional dependency between sites and concentrators:

sites eve concentrators. (7)

This component of the data model serves to justify the presence, and specific

form, of this constraint in the mathematical model. This is depicted in Figure 2

which shows the relevant fragment of the justification network for this model.

In general, in formulating a model, one identifies the modeling variables and

specifies the relationships between them. Each of these components is intro-

duced by the modeler to represent some aspect of the problem being modeled.

Previous studies in model formulation [39, 40] have found that expert modelers

explain their formulations by relating components of the model to the objects

and relationships in the problem statement. Since the data model is a qualita-

tive representation of a problem, components of the mathematical model can be

justfied in terms of some element(s) of the data model. Thus, the information

formalized in the data model serves two related purposes in the formulation of

the mathematical model. First, this information is useful in the creative part of

model formulation, such as in introducing a new variable or a new constraint.

Second, this information is useful in justifying components of the mathematical

model, and serves as useful active documentation of the same.

10
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Figure 2: Fragment of the justification network

2.4 Model Reformulation and Version Management

Now consider the following modification to the problem being modeled. In the

original statement, we considered a scenario in which "all link usage costs [were]

constant, irrespective of the type of link." Consider, now, a scenario in which

the link usage costs are measured more accurately. First, we must distinguish

between the cost of using owned links (call it Cj) and the cost of using leased

links (call it C"). Second, the C' 's should be computed as some function g of

the link speed, and the C" 's should be estimated using a model, which specifies

a non-linear functional relationship between the cost and volume of traffic on a

link:

= g(s 2 ) (8)

Cs = f(Lj,o"(Lj) (9)

where Si is the speed of link j, Lj is the average load on host j, a(Lj) is the

standard deviation of the load on host j, and f is a specified non-linear function.

The cost function C, can now be written as

J' g(S,) if the link (ij) is owned (10)
1 f(Lj,,P(Lj)) if the link (ij) is leased

These modifications result effectively in a new mathematical formulation,

with a non-linear objective function. However, note that the underlying data

model is still the same, and that the new expressions in the formulation can

still be justified by components of the original data model. In fact these modi-

fications are the consequences of considering attributes, which were previously

ignored, already present in the data model.
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For a given problem, several models may be formulated and explored in the

course of model development. We refer to each distinct model that results from

such formulations as a version. Each version is the result of making certain

assumptions about the problem. In the current example, we replaced the as-

sumption about constant link usage costs for all links with one where there were

different costs for leased and owned links. The effect of the new assumption was

to replace the total usage cost expression Eirc -jES CwiX' with a new total

usage cost expression (expressions 8-10). When model formulations are large or

complex, it is a non-trivial task to identify and replace model components that

are affected, directly or indirectly, by changes in assumptions. However, this can

be facilitated by examining the justifications, in terms of elements of the data

model, for each component of the mathematical model. A model component

that does not have at least one justification can be retracted as it lacks support

in the version being created, example? maybe

Further, comparing the original and new formulation for the communica-

tions network problem, we see that the models share a great deal of structure:

apart from their objective functions they are the same models. One plausible

approach to reformulation is to start with the original model and its underly-

ing justifications, and to selectively make the changes required to create a new

version. The original data model (or, in general, a substantial part of it) can be

re-used to justify and document the new formulation. Thus, the data model and

the associated justifications support this kind of version creation, by promoting

re-use of previous modeling effort.

When several model versions are created, one may lose track of the similari-

ties and differences betwen versions. Software tools are available for mitigating

this problem. For instance, if each version is stored in a file, an operating system

utility (such as df in the UNIX system) can be used to determine differences

in terms of lines present in one file that are absent in another. In the net-

work design example, dif may be used to determine that the objective function

in one version is E-,C EjEs COX0 while the objective function in another is

E*EC ZjEs g(S2 )Xi, + f(Lj, a2(Lj)). However, such utilties lack means to pro-
vide reasons as to why these objective functions are different. The data model

and associated justifications can be used to do that and much more, as shown

12
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below.

Consider the version graph for the communications network problem. Each

node in this graph represents a model version for the problem. A directed arc

from a node V, to node V2 indicates that version V/2 was obtained by modifying

version V1. The labels on the arcs represent the assumptions that were deleted

and / or added in order to move from V, to V2. A fragment of this graph is

shown in Figure 3. Thus, this graph captures the sequence in which various

versions were developed, the differences between versions, as well as the reasons

for developing new model versions. It documents the chronology of the model

development process, and can be a useful repository of modeling experience.

Complex models can be hard to solve, and successful modelers often evolve so-

lution strategies by developing several versions [37]. They solve relaxed models,

selectively increase the complexity by introducing new assumptions, and use the

solutions from the relaxed model to solve the new model version. For a given

problem, clues about a useful solution strategy can be obtained by examining

the chronology of successful model development processes for related models.

2.5 Discussion

We have illustrated several benefits that would result from integrating features of

data modeling languages into mathematical modeling languages. Put together,

we believe they make a convincing case for providing such integration. In our

view, one of the most significant implications of such integration is that it allows

a modeler to document justifications, in terms of elements of the data model, for

various components of a mathematical model. There are several benefits that

follow from the availability of such justifications. These include improvements

in a modeling system's ability to explain and communicate the model, to track

changes to models, to explain similarities and differences between various ver-

sions of a model, and to examine consistency of a model formulation in terms

nf its jiiqtifications. Having made the case that such integration is desirable,

how do we achieve it? We present our approach to the integration of data and

mathematical modeling languages in the next section.
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3 A Formalism for Language Integration

Ou ,Aethod for language integration is based on the embedded languages tech-

nique developed by Bhargava and Kimbrough [4]. The embedded languages

technique provides a systematic means for integrating multiple "embedded"

languages within a single "embedding" language. In our context, one embed-

ded language is a generic data modeling language Ld, and the other embedded

language is a generic mathematical language L,7.. Following the convention of

Bhargava and Kimbrough, the embedding lang,,age will be called LT.

3.1 A Generic Data Modeling Language Ld

We begin by formalising a generic semantic data modeling language, which we

call Ld. The language supports data modeling constructs (aggregation, group-

ing, generalization, and specialization) as a means for the direct and explicit

representation of structural relationships between data elements. Our develop-

ment of the language is based on the set theoretic development described in [29].

The reader may find it useful to refer to Figures 1 and 4, where we represent

pictorially and textually, respectively, the data model for the communications

network model (example 1).

In a data modeling language, the real-world is conceptualized as a collection

of objects and relationships between these objects. An ohjec type is a set of

objects. For any object type .4 we will denote the set of objects that it represents

by A. The specification of an object type may be either prnmitive or compound.

A semantic data modeling language provides a set of abstraction relationships

that are used to specify compound object types in terms of other object types,

as well as to capture relationships between object types.

Definition 1 Primztire Specification of an Object Type

A primitive specification of an object type consists of a definition for

the object type as a set of objects drawn from a collection of known

domains. The commonly occurring domains are the sets of reals,

integers, boolean, and strings. Other domains, subsets of these,

may be defined by users of the language.

15



## PRIMITIVE OBJECT TYPES ##
object-type(terminals); # individual terminals
object-type(sites); # customer sites
object-type~controllers); # terminal controllers

## COMPOUND OBJECT TYPES (SEMANTIC RELATIONSHIPS) ##
aggregation-of(Econcentrators, sites) ,owned-links); #
owned-i inks
aggregation-of([concentrators, sites) ,leased-links); #
leased-links
aggregation-of(Eclusters, controllers) ,controlled-by); #
controllers of clusters
group-of (terminals ,clusters); #
clusters
generalization-of( Esites, concentrators) ,network-elenents); #
network-elements

specialization~owned-links, links);
#links
specialization(leased-links,links); #
links
specialization-of (sites ,hosts); #

host computers
specialization-of(sites.controllers); U
concentrators
specialization-of (links,serves) ; #

serves

## FUNCTIONS (ATTRIBUTES) ##
range-of(setup-cost(concentrators) ,reals)

range-of (operation-cost(concentrators) ,reals)

range-of (max-bandwith(concentrators) ,integers)
range-of (link-speed(owned-links) ,reals)

Figure 4: Data model for Communications network design expressed in Ld
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Example 2 Prmitive Object Type: Host Computers

The collection of host computers, labelled hosts, has a primitive

specification in our example. The object type hosts is defined as a

collection of objects that denote specific host computers, say host-I,

... , host-n. The terms host-I, ... , host-n are drawn from the domain

of strings. In Ld this specification is achieved by statements such as

the following:

obj ect (host-1)

obj ect-type (hosts)

element-of(host-i, hosts)

which represent that hosts is an object-type and the object host-I

belongs to that type.

Definition 2 Compound Speczfication of an Object Type

A compound specification of an object type consists of a definition

of that object type in terms of other object types and one of the

following abstraction relationships: aggregation, generalization, spe-

cialization, and grouping.

Each of these abstraction relationships and its use in object specification is

discussed below.

Definition 3 Aggrygation

The aggregation of a set of object types A 1,. ,A, is an object type

A such that the set of objects represented by A is a subset of the

Cartesian product of the sets vi objects represented by A 1 ,..., A,

i.e.,

rI

A C @.4,
g=1

Example 3 Compound Specification: Aggregation

17



The object types owned-links and leased-links which represent con-

nections between concentrators and customer sites (see example 1)

are both aggregations of concentrators and sites. These are a collec-

tion of 2-tuples of the form (c, s) where c is a concentrator and s is

a customer site. This information is represented in the data model

by the aggregation nodes owned-link and leased-link, and is specified

in the language as follows:

aggregation-of( [concentrators, sites) ,owned-links)

aggregation-of([concentrators, sites) ,leased-links)

element-of(<concentrator-1,host-l>, owned-links)

element-of (<concentrator-2,controller-3>, leased-links)

These statements represent that owned-links and leased-links are

object types formed by aggregating concentrators and sites, that a

specific owned link is the link between concentrator-I and host-I,

and that a specific leased link is the link between concentrator-2 and

controller-3.

Definition 4 Grouping

The grouping over an object type A is an object type B such that

the set of objects represented by B is a power set of the set of objects

represented by A. Thus, any subset of .A is an object of type B, and

B = IS : S C A)

Example 4 Compound Specification: Grouping

A terminal controller unit controls a cluster, i.e., a collection, of

terminals. A particular cluster is some subset of the set of objects

of type terminals. The object type clusters is represented in a data

model as a grouping of terminals, and is specified in the language as

follows:

group-of (terminals,clusters)

18



element-of({terminal-1, terminal-2, terminal-3}, clusters)

element-of ({terminal-5,terminal-4}, clusters)

Definition 5 Specialization

A specialization of an object type A is an object type B such that

the set of objects represented by B is a subset of the set of objects

represented by A, i.e., B C A. The objects of type B inherit the

structure of the objects of typc .4. There can be several specializa-

tions of an object t)pe, and these specializations are not required to

be disjoint.

Example 5 Compound Specificatzon: Spectalizatton

In example 1, host computers and clusters of termnals are equiu-

alent, and are referred to as customer sites, and a host computer

may also serve as a terminal controller. The hosts and controllers

are represented in a data model as specializations of the object type

sites, and are specified in the language as follows:

specialization-of (sites ,hosts)

specialization-of (sites,controllers)

element-of (host-1 ,hosts)

element-of (host-i, controllers)

element-of (concentrator-i,concentrators)

The specialization relationship allows the intersection of the sets

hosts and controllers to be non-null, which is indeed the case here

since host-I is both a host computer and a terminal controller.

Definition 6 Generalization

A generalization of a set of object types A 1 .... A,, is an object

type .4 such that the set of objects represented by A contains all the

objects represented by A 1, ... , An, i.e.,

i=1
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The sets A1 ,...,..4 are assumed to be pair-wise disjoint.

Example 6 Compound Spectfication: Generalization

In example 1, a network element is either a concentrator or a host

computer. In the data model, the object type network-elements is

a generalization of the object types concentrators and hosts, and is

specified in the language as follows:

generalization-of([sites, concentrators] ,network-elements)

element-of (host-S,network-elements)

element-of (concentrator-i,network-elements)

The abstractions discussed above are useful in capturing some of the com-

monly occurring data structures and relationships between data. The constructs

specialization and generalization capture the "hierarchical" relationships among

objects in the problem domain, while aggregation and grouping capture the "hor-

izontal" relationships. In addition, functional relationships among object types

are represented as attibutes of the object types in the data model. For example,

the cost of operating concentrators is represented as an attribute operation-cost

of concentrators.

To summarize, Ld is a specialized first-order language with a) an open vocab-

ulary of individual constants representing objects and object types in the ddta

model, b) an open vocabulary of function constants representing attributes of

objects or object types, and c) the following special predicate constants (in the

notation below, A, A,..., A,, and B denote individual constants):

" object: A unary predicate, such that the statement object(A) asserts that

A is an object,

" object-type: A unary predicate, such that the statement object-type(A)

asserts that A is an object type,

" element-of: A binary predicate, such that element-of(.4, B) asserts that

the object A is an element of the object type B, 6

6 Here, and elsewhere, it is not necessary that the predicate be defined extensionally in Ld.
For example, the objects belonging to a certain object type -night be declared by pointing,
using a query language, to a column in a database that stores the objects of that type.
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" aggregation-of: A binary predicate, such that aggregation-of([A,..., An],B)

asserts that the object type B is an aggregation of the object types

A1,...,A ,

" grouping-of: A binary predicate, such that grouping-of(A,B) asserts

that the object type B is formed as a grouping over object type A,

" specialization-of: A binary predicate, such that specialization-of(A, B)

asserts that the object type B is a specialization of object type A,

" generalization-of: A binary predicate, such that generalization-of([A 1. , A,],B)

asserts that the object type B is a generalization of the object types

A, ..... A, subtype(A,B) declares that the primitive

" function-range: A binary predicate, such that function-range(f(A),B)

represents that the range of function f with domain .4 is B.

As a simple example, if Ld were to be a relational data modeling language,

the names of the relation schemes would be object types in Ld, and the columns

of these relations would be function constants in Ld.

3.2 A Generic Mathematical Modeling Language Im

For our purposes in this paper, any of the existing executable algebraic modeling

languages (such as AMPL, GAMS, L1 , LINGO) could serve as the mathemat-

ical modeling language Lm. While there are some differences between these

languages, they are very similar in the basic structure and in the characteristics

that we are concerned with in this paper. Hence instead of specifying a new

language, cr of illustrating our ideas on a specific language, we will assume a

generic modeling langauge. For details on any of these particular languages, we

refer the reader to the appropriate references mentioned in §1. An executable

modeling language based on first-order logic is discussed in [6]. Here, we restrict

ourselves to a simple illustration of this language, by representing the model of

example I in an AMPL-like syntax (see Figure 5)
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### SETS ###

set C; # Concentrators
set S; # customer Sites (hosts and controllers)

### PARAMETERS ###

param cost {C,S} > 0; # cost(i,j) of using link between
concentrator i and site j

param fcost {C} > 0; # fixed setup cost(i) of locating and
operating concentrator i
param load {S} >= 0; # load(j) at customer site j
param k (C} > 0; # bandwidth(i) of concentrator i

### VARIABLES ###

var x {C,S} binary; # x(i,j) = 1 if concentrator i serves site
j, 0 otheriise
var z {i} binary; # z(i) = I if concentrator i is operated, 0

otheriis6

### OBJECTIVE FUNCTION ###

minimize total cost:
sum {i in C}(sum {j in S) (cost[i,j] * x[i,j]) + fcost[i] *

### CONSTRAINTS ###

subject to linkages {j in SI: sum {i in C} (x~i,j]) 1;

# each site must be served by exactly 1
concentrator

subject to capacity {i in C): sum {j in SI (load[j] * x[i,j]) <=
z[i] * k~i];

# each concentrator (if open) has a
bandwidth capacity

Figure 5: Communicatzons network deszgn model expressed in Lm
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3.3 Integrating Ld and Lm in LT

In [4], Bhargava and Kimbrough developed the embedded languages technique

and explained how an algebraic modeling language (a specialized first-order

logic language, LI) is embedded in LT. The embedded languages technique

provides a systematic and rigorous means for integrating, and reasoning about,

multiple (embedded) languages. In that framework, an embedded language

(Li)-which models a semi-formal target language (Lj)-is embedded within

an embedding language, (LT), which is used to represent information about

formulas and terms in the embedded language, and to translate one embedded

language into another.

Central to the embedded languages technique is the idea of an image function

1, and a translation function .F. An embedding is a triple (1,1, A.), where A

is a collection of formulas, in LT , that represents the rules of inference and

transformation of L1 . The image function I uniquely maps all expressions-

terms and formulas-in L, into terms in LT. The translation function .F uniquely

maps the images of all formulas in L, into formulas in LT. Therefore, in order

to embed Ld and L, in LT , we require functions I and T such that a) the

well-formed formulas as well as terms of Ld and Lm be interpretable as terms

in LT, and that b) there be a formula in LT corresponding to, and making an

assertion regarding, each formula 0 in Ld.

Bhargava and Kimbrough discussed the image and translation functions in

detail in the context of embedding an algebraic modeling language. The func-

tions are developed along similar lines for embedding a data modeling language.

In what follows, we focus on the predicates that are required to relate infor-

mation across the two embedded languages. Of these, the predicates used to

represent justification networks and the predicates that declare the belief status

of the components that are the nodes of the networks are formalizations of the

work reported in [40].

To begin with, assume that there are predicates wff-Ld and wff-Lm in LT

with the following interpretation:

* wff-L,(I(¢)) states that 0 is a wff in L,

* wff-Ld((,V)) states that € is a wff in Ld
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data model is not mapped to any variable in the mathematical model,

that might suggest that a new variable needs to be introduced.

4.2 Ensuring Integrity of Data

Consider, again, the statement Each site must be served by exactly one concen-

trator. It implies that for any objects i1 , i2 , and j, if (il,j) and (i2 ,j) are both

objects of type serves and if il and i2 are distinct, then there is a problem with

the data, i.e.,

((ii ,j) E ser'es) A ((i 9 ,j) E serves) A (ii 0 i2)

A(il E concentrators) A (i2 E concentrators) A (j E sites)

not-ok(((i1,j) E serves A ND (i2 .j) E serves)) (11)

This is represented by the following LT formula:

wff-Ld(l(element-of( (i1 ,j), serves))) A wff-Ld(1(element-of((i 2, j), serves)))

A(I(il) 1(i2 )) A wff-Ld(I(element-of(il, concentrators)))

Awff-LA(1(element-of(i 2 , concentrators))) A wff-Ld(I(element-of(j. sites)))

-. not-ok(1(element-of( (il, J), serves)) AND I(element-of( (i2, J), serves))012)

The ability to make such statements means that constraints that are nor-

mally not part of the mathematical formulation can now be included in the

model representation. In fact, statements of this sort can be derived from a

more general LT formula (as explained below), which means that such con-

straints can be enforced simply by declaration of the functional dependencies in

the data model.

Let us introduce in LT a predicate f-d such that the formula f-d(1(€'1 ), 1(,), 1(02))

means that there is a functional dependency of the form in the data

model. This dependency is meant to ensure that elements

(ii,j) and (i 2 , ) can both belong to only if i1 is equal to i 2 . This rule is

stated in LT as indicated below.
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VilVi 2Vj(wff-Ld(I(element-of( (i1 ,j), p))) A wff-Ld(1(element-of((i 2 ,j), 1v)))

A(I(il) # 1(i 2)) A wff-Ld(.(element-of(il, 0)))

Awff-Ld(I(element-of(i,, 01))) A wff-Ld(1(element-of(j, 02)))

- not-ok(I(element-of((i I, j),V,) AND elernent-of((i 2,j), ,))))) (13)

4.3 Model Formulation

Consider the example in §2.3 illustrating the relationship between the problem
statement and its mathematical model. The statement "Each site must be
served by exactly one concentrator, though the same concentrator may serve
various sites" justzfies the constraint < 1. It is stated in LT as shown

below.

justifies(l(sites serves concentrators), "(E Xik < 1), v,) (14)

The same component may be justified in different ways. These distinct justi-

fications are referred to as disjunctive justifications. When several components
(elements of the data or the mathematical model) jointly justify another com-

ponent, such a justification is a conjunctive justification. An example of such

a justification is that of the expression EIEs LX~j < ZiKi by the variables
XN1 , Z,, K, and L,. This can be stated in LT using Ihst [I notation to indicate

conjunction.

justifies([I(X ,),I(Z ),Y(IK,),I(Lj)],I(y Lj.Yij 5 Z,K,), vl) (15)

.1ES

There are several benefits that can accrue from explicitly declaring justifica-

tions as a part of the model representation.

* The justification network which is the set of all justfications associated

with a formulation can serve as an active documentation of the model. It

can be queried, and thereby can promote model understandability. The
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queries can not only extract information explicitly asserted but also infer

chains of justfications.

9 Model formulation can suffer from flawed reasoning. The justfication net-

work can help detect such flaws. A cycle in a chain of justifications associ-

ated with a component indicates such a flaw. Cycle detection algorithms

[2] can be specified in the LT language.

4.4 Model Reformulation and Version Management

The justfication networks, with some extensions, can help with model refor-

mulation and in version management. This section will discuss the nature of

these extensions, and how they can fruitfully assist in reformulation and version

management.

Model reformulation entails changes to components. All components directly

or indirectly (i.e., on a justification path) justified by a changed component are

affected. For example, consider the assumption that link usage costs depend

only on the (ij) pair they are an attribute of. Now suppose we replace this

with an assumption that they are also a function of link type. This implies

that in the new formulation Cj is removed, as is the old objective function it

(jointly) justifies. It is replaced by new cost functions for leased and owned

links, and a new objective function as discussed in §2.4. If these changes were

made within the context of a single formulation, then the justifications could

simply be altered to reflect the new assumptions. However, what should be

done if the modeler chooses to retain the original model, and simply investigate

these changes in the context of a new version? Now, in addition to declaring

the justification relationships, we need a mechanism to declare if the model

components used in the justification relationships are, or are not, believed in a

given version. In our example, the original assumption about link usage cost is

believed (declared to be IN) in the original model but not believed (declared to

be OUT) in the new version. These declarations of belief are stated as shown

below.

in-label(2(depends-only-on(Co,, (i,j))), vi) (16)
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out-label(I(depends-oly-on(C0, (i, i))), v2) (17)

The first assertion states that the belief that Cii depends only on the (ij) pair

and not link type (i.e., the constant link usage cost assumption) is IN in version
v1, the label used to refer to the original formulation. The second assertion

states that this belief is OUT in the new version labelled v2.

With these representations (i.e., justification networks and belief status)

in place, specific functions can be defined in LT to specifically support model

reformulation and version management. We give two specific examples: a) a

function that propagates a change in belief status of a model component (node)

in the justification network, and b) a function that computes similarities and

differences between versions. These have been adpated from [39, 40] where a
fuller discussion of functions that can be used to support reformulation and

version management can be found.

When the belief status of a model component changes, the belief status of all
the components justified directly or indirectly by it can change. Two functions,

in-propagate and out-propagate, are specfied inLT to manage these changes in

belief status.

function in-propagate(Component,Ver);
if out-label(I(Component),V) and Ver E V
then in-label(I(Component) ,Ver)
endif
VC justifies(I(Component),I(C) ,Ver)
do in-propagate(C,Ver)

end function in-propagate

When the belief status of component is changed to IN, the belief status of
all the model components that are directly or indirectly justified by this com-

ponent are also changed to IN. The justification network is used to identify the

components whose belief status should be changed.
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function out-propagate(Component,Ver);
if in-label(I(Component) ,Ver)

then out-label(I(Component),Ver.V)
endif
VC justifies(I(Component),I(C),Ver)

if -'3K" justifies(I(K),I(C))
then do out-propagate(C,Ver)

endif
end function out-propagate

When the belief status of a component is changed to OUT, the belief status

of all components solely justified by it are also changed to OUT.

Over the course of a modeling project, several model versions may be con-

structed. Some of these versions will share components. For instance, different

link usage cost assumptions resulted in two distinct versions with similar con-

straint structures but different objective functions. The ability to enquire about

the similarities and differences between versions can be very useful when a mod-

eler works with multiple versions. The function deternune-justzficazon supports

this feature.

function determine-justification(Component ,Ver);
if primitive-node(I(Component),Ver)

then return Component
else let S be the list of components such that VE E S
justifies(I(E),I(Component),Ver) and in-label(I(E),Ver)

recursive-determine-justifications(SVer)

end function determine-justifications

function recursive-determine-justification(Set,Ver);

return append(determine-justification(first(Set)Ver),

recursive-determine-justification(rest(Set) ,ver)
end function recursive-determine-function

The functions determine the justification chain associated with a given model

component in a version. This function can now be used to determine similarities

and differences. Consider the variable C,,, which represents the link usage cost,

in version vl and v2. This variable is a component whose belief status is IN

in both versions. However, it has a different set of justifications in vi (i.e.,

that it depends only on the (ij) pair it is an attribute of) and v2 (i.e., that

i!. also depends on link type). So here we the same component that is present
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in two different versions being justified in different ways. Using the determine-

just:ficalaons function, the above mentioned justifications can be determined.

Upon comparison, the similarities and differences can be uncovered.

5 Conclusions

In this paper we began with the proposition that there is much to gain by mak-

ing data modeling language constructs available to modelers using an algebriac

modeling language. We have discussed one way of achieving this, namely via

an embedded languages approach, and have applied it to define several useful

modeling support functions.

Specifically, we discussed the use of justifications to document the reasons

for a particular mathematical formulation in terms of components of the data

model. The advantages of such justifications need to be investigated further.

For example, we believe that they can pky --n useful role in model integra-

tion. When models are integrated manually, modelers use information about

the assumptions underlying components of the models being integrated. If two

models with conflicting assumptions are being integrated, these conflicts must

be identfied and resolved by the modeler. Systematic support for tasks such as

this can be provided using justification networks. Another potential advantage

of our approach might be realized in the initial stages of model reuse. Model

reuse begins with the identification of candidates for reuse [34]. When there are

several candidates, in the absence of support, this can be hard. The additional

information offered by the justifications could provide such support.

To conclude, we have laid out a systematic approach for combining the

strengths of data and mathematical modeling languages. We have argued that

this can significantly improve the functionality of model management systems

and have demonstrated some of the benefits. Much more remains to be done,

but we hope to have raised issues for debate and future research.
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